If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-4.9t^2+150t+350
We move all terms to the left:
0-(-4.9t^2+150t+350)=0
We add all the numbers together, and all the variables
-(-4.9t^2+150t+350)=0
We get rid of parentheses
4.9t^2-150t-350=0
a = 4.9; b = -150; c = -350;
Δ = b2-4ac
Δ = -1502-4·4.9·(-350)
Δ = 29360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{29360}=\sqrt{16*1835}=\sqrt{16}*\sqrt{1835}=4\sqrt{1835}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-150)-4\sqrt{1835}}{2*4.9}=\frac{150-4\sqrt{1835}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-150)+4\sqrt{1835}}{2*4.9}=\frac{150+4\sqrt{1835}}{9.8} $
| 12/43x=180 | | 11y/20-4=6-5y/4 | | 17v−16v=14 | | 2(2x+3)=6(x+9 | | 7(3x-5)-6(2x-4)=4x+34 | | 12/43x=189 | | 5x+4=1+2x | | 2.3y+8-3y-10=0 | | 3.4y+(-5.2)=3y+2 | | 5(k-2)-8=4k-(3k-2) | | 12x-19=9x+5 | | 135=t−136 | | -7/6=15/6+d | | 10+6.00m=6+8.00m | | 3(k-3)-7=3k-(2k-3) | | n+3=15+4n | | 10j10j⋅10j=80 | | x+20+x+50+2x+x=360 | | 7-9x+13=2x+20-11x | | 4+69/p=13 | | 12-9s=7 | | 3x-21=60 | | 4a-3=4(a+1)+11a+5 | | -33-3(6y-4)=7(y-4) | | 10/7x=21 | | 2/t+9=19 | | x3–5x2+6x=0 | | 2.5x-1=5 | | 10b^2+19b-11=-17 | | 6m2+13m=-6 | | 4(5x-6)-4(3x-4)=64 | | 2+1/4x=-1 |